Science and Technology Facilities Council
Printable version E-mail this to a friend

Boosted X-rays set to advance medical and security scans

A breakthrough at STFC's Rutherford Appleton Laboratory is set to revolutionise X-ray imaging. With potential applications ranging from novel medical imaging to security screening, physicists have found a way to produce a bright, high energy X-ray source, several times more energetic than those commonly used in radiology. The special properties of these X-rays make them ideally suited to producing high resolution images in medical applications.

The results, published online at Nature Physics (Sunday 18 September 2011) could pave the way for systems that will reveal far greater detail than is possible at the moment.

The bright X-ray source was demonstrated on the internationally unique Gemini laser at STFC's Central Laser Facility by a team led by the University of Strathclyde. The laser beam is focussed into a tube of hydrogen gas, trapping electrons in an ion-cavity and accelerating them. The trapped electrons also oscillate in the laser field and it is the energy from their resulting oscillation that produces X-rays. Usually that oscillation is at odds with the frequency of the laser pulse but by changing the gas density to align the oscillations physicists can produce an X-ray with ten times the energy previously obtained from such sources (from 10's of keV to 100's of keV). This also enables them to produce significant amount of Gamma rays.

Some of these X-rays are so intense that they can pass through 20 centimetres of lead and would take 1.5 metres of concrete to be completely absorbed. They are also strongly polarised (like a laser) and are emitted from a very small area which makes them ideal for use in high resolution medical imaging where structures such as hairline fractures are often invisible using conventional X-rays. Until now, such high energy X-rays could only be produced at high cost using accelerators which are 100s of metres in size. This breakthrough opens the way for systems that could be much more compact and produced at reduced cost. Screening for disease and for illegal goods in transport are just two potential applications.  This research is still in its early stages and more work needs to be carried out to develop the technique.

More details may be found in the University of Strathclyde's press release (link opens in a new window).

Mobilising excellence in prison operations